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Abstract—Although synthesis was considered an important 
and challenging approach to construction of a program or a 
program model in software development, most of research on 
synthesis has been devoted to the construction of state 
machine models or variations of them. Recently, as process 
modeling through languages like UML Activity Diagram and 
BPMN appears as a new paradigm of software development, 
the ability to synthesize models in such languages from 
requirements would tremendously increase the scope of 
automatic software development. This paper presents 
transformation rules for synthesis of UML Activity Diagrams 
from scenario-based specifications modeled as UML Sequence 
Diagrams. To that end, we first identify various control flow 
patterns of Sequence Diagrams and define rules for mapping 
them to corresponding parts of Activity Diagram. In order to 
make precise such mapping labeling rules are introduced for 
the patterns. Also we provide a synthesis algorithm for 
construction of a UML Activity Diagram from scenarios.  
 
       Keywords-component; Transformation, Synthesis, UML, 
Activity Diagram, Scenario-based Specification, Sequence 
Diagram, BPMN 

I. INTRODUCTION 

     The term “synthesis” has been traditionally used to 
represent automatic construction of a program or a 
behavioral model from formal requirements. This can be 
seen in the remark by Manna et al. [12] that it “takes a 
relational description and tries to produce a program that 
is guaranteed to satisfy the relationship, and therefore does 
not require debugging or verification” and the remark by 
Harel et al. [5] that it is “the problem of automatically 
constructing a behaviorally equivalent state-based 
specification from the scenarios.” 

 In the past, although synthesis was considered 
important and challenging, research on synthesis was 
carried out mostly to derive state-based models from 
scenario-based specification [2,6,9,11,15,16,18]. Recently, 
as the software systems and business processes of 
enterprises become more and more complex, process 
modeling through languages like UML Activity Diagram 
and BPMN appears as a new paradigm of software 
development. A notable example can be found in the 
Service-Oriented Architecture approach to software 

development [4], in which services are basic elements for 
constructing new complex services and the complex 
services are defined in terms of business process models 
that are to be automatically executed by a process 
execution engine. Therefore the ability to synthesize 
models in such languages from requirements would 
tremendously increase the scope of automatic software 
development. 

This paper presents a method for synthesizing process 
models from scenario-based specifications [3,11], which 
can be formally specified with the UML Sequence Diagram  
[14] or the ITU-T Message Sequence Chart [1,7]. For 
process models languages, most well known are UML 
Activity Diagram [14] and BPMN [13]. Both of them are 
graphical notations for specifying workflows and business 
processes.  

In contrast with synthesis of state machine models, the 
synthesis of UML Activity Diagram has different 
characteristics that pose unique challenges: First, UML 
Activity Diagram is typically used for system-level design. 
Therefore, the synthesis should not end with individually 
synthesized state machines bust should end with a holistic 
Activity Diagram that include all participants of the system. 
Second, the synthesis of state machine models would 
depend on state identification in Sequence Diagram. To 
figure out common states throughout multiple scenarios, 
previous researches either used explicit or implicit state 
labeling. In contrast, for synthesis of UML Activity 
Diagram, identify states would not work as Activity 
Diagram does not show states. 

This paper presents a synthesis method that overcomes 
these challenges. To that end, first, we identify how control 
structures in Sequence Diagrams can be transformed to 
equivalent control structures in Activity Diagram and 
present it as mapping rules. Then we introduce labeling 
rules for adding new labels to Sequence Diagrams for 
explicitly representing the ordering of events in each 
process of Sequence Diagram, and, finally, provide a 
synthesis procedure which constructs an Activity Diagram 
from multiple scenarios. 

The remainder of the paper is organized as follows: In 
Section 2, mapping rules and labeling rules for synthesis of 
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Sequence Diagrams to Activity Diagram are presented. 
Section 3 presents our synthesis procedure. Finally, Section 
4 is the conclusion and discusses the contributions of the 
paper and the future research directions.  

II. TRANSFORMATION RULES 
There are seven basic control flow patterns that we 
identified in Sequence Diagram. The most elementary rule 
maps an action of an object in Sequence Diagram to an 
action in Activity Diagram. For the rest of the six control 
flow patterns, we associate two kinds of rules. The first is 
mapping rules for transforming parts of a Sequence 
Diagram into corresponding parts of an Activity Diagram. 
The second is labeling rules that are necessary for tracking 
while disassembling a Sequence Diagram into parts and 
reassembling the transformation results for them. 

A. Rules for Mapping Control Flow Patterns 

Mapping Rule 0 (The Action Pattern). A self call action of 
an object in a sequence diagram translates to an action of 
the corresponding participant of an Activity Diagram.  

 
Figure 1. Mapping of the Reference Pattern 

Notice that in drawing a sequence diagram in Figure 1, we 
used a few simplifications not to clutter diagrams. So an 
object name is not boxed and activation is not explicitly 
shown.  

As more complicated aspect of transformation, the 
control flow of the objects in Sequence Diagram can be 
categorized into the six kinds to be called patterns: 1) 
simple interaction, 2) reference, 3) sequence, 4) branch 
and merge, 5) loop and 6) parallel split and join. They are 
translated to Activity Diagram by applying the following 
six mapping rules.  

Mapping Rule 1 (The Simple Interaction Pattern).  The left 
hand side of Figure 2 shows a simple interaction which has 
just one message passing between two objects. Message 
passing description in Sequence Diagram can be translated 
using the notations such as send signal, receive signal, 
object nodes, and transition between the signal node and 
the object node. To represent such parallel behavior that 
represents message send event and message receive event 
between two concurrent objects, join and fork nodes are 
used.  

 
Figure 2. Mapping of the Simple Interaction Pattern 

Mapping Rule 2 (The Reference Pattern). This pattern is 
used when a reference is used in a Sequence Diagram. The 
left hand side of Figure 3 shows how reference to a 
subdiagram ("K" in this example) is translated. Note that 
when reference is used in Sequence Diagram, we omitted 
explicit reference notation and simply used reference name. 
Then it should be expanded later after the expansion of the 
reference of Sequence Diagram is recursively translated 
into the Activity Diagram and connected to the rest of the 
Activity Diagram.  

 
Figure 3. Mapping of the Reference Pattern 

Mapping Rule 3 (The Sequence Pattern). This pattern 
represents a simple sequence of message passing between 
two objects. The order of message events is determined by 
the vertical positions along the lifeline of each object. The 
Sequence Pattern is illustrated in Figure 4. When references 
are used, the reference type of Sequence Diagram 
specification is translated into the interaction occurrence 
type of Activity Diagram.  

 
Figure 4. Mapping of the Sequence Pattern with a Simple Interaction and 

an Sequence Diagram reference 

Mapping Rule 4 (The Branch and Merge Pattern). 
Application of the alt operator of Sequence Diagram can 
be transformed to Activity Diagram using the 
synchronization bars, decision nodes and the merge nodes. 
The operands in the alt operator contain multiple paths 
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with guard conditions and alternatives. All objects 
participating in the alt operator select the same path. In 
the corresponding Activity Diagram, all participants that 
correspond to the objects that selects are synchronized and 
forked before going into the alternative sections. Then the 
participants that finish the alternative sections are merged 
in the merge node as shown in Figure 4. This example and 
the following examples show the case for two objects but it 
can be generalized straightforwardly to the n objects case.  
Mapping Rule 5 (The Loop Pattern). In order to transform a 
loop operator of Sequence Diagram into an Activity 
Diagram, setup, test, and body sections should be identified 
first. After finishing the body section, each process that 
participates in the body section goes back to the join node 
to check the condition again. 
Mapping Rule 6 (The Parallel Split and Join Pattern).  The 
par operator of Sequence Diagram represents parallel 
composition of multiple scenarios. By using the fork and 
join nodes of Activity Diagram, a participant can be split 
into multiple threads and joined together as in Figure 7.  

B. Labeling Rules for Sequence Diagram 
When transforming a specification in Sequence Diagrams 
to an Activity Diagram, fragments of Sequence Diagrams 
are labeled with Entry and Exit (EE) labels. EE labels 
provide information about relative positions of fragments 
of Sequence Diagrams so that the transformed fragments 
can be combined within an Activity Diagram [14] based on 
them. There are six labeling rules as Mapping Rule 0 does 
not have its corresponding labeling rule.  

Labeling Rule 1 (The Simple Interaction Pattern). Insert 
labels before and after each message event of each object.  

In each object of a Sequence Diagram, an entry label is 
inserted before and an exit label is inserted after a message 
event (Figure 8). Each label must be unique. 

Labeling Rule 2 (The Reference Pattern). Insert labels 
before and after each reference in Sequence Diagram.  

In each object of a Sequence Diagram, an entry label is 
inserted before and the exit label is inserted after a 
Sequence Diagram reference (Figure 8).  

 
Figure 5. Mapping of the Branch and Merge Pattern 

 

Figure 6. Mapping of the Loop Pattern

 

Figure 7. Mapping of the Parallel Split and Join Pattern 
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Figure 8. Application of Labeling Rules 1 and 2 

Labeling Rule 3 (The Sequence Pattern). Insert the 
same entry label before a message event if a message 
event is immediately followed by another message.  

With this rule, the exit label of the current message 
event and the entry label of the following message have 
the same label. In this way, the order of message events 
can be explicitly represented (Figure 9). This rule also 
allows fragments of Sequence Diagram to be easily 
connected to other transformed fragments in the 
Activity Diagram (Figure 10). 

 
(a) Diagram before applying Labeling Rule 3 

 
(b) Diagram after applying Labeling Rule 3 

Figure 9. Application of Labeling Rule 3 

 
Figure 10. Connecting Sequence Diagram Fragments using Labels 

 
(a) Diagram before applying Labeling Rule 4 

 
(b) Diagram after applying Labeling Rule 4 

Figure 11. Application of Labeling Rule 4 

Labeling Rule 4 (The Branch and Merge Pattern). If a 
Branch and Merge Pattern occurs, mark one entry label 
at the start of the branching flow, exit labels at the end 
of each alternative path per a participant and the end of 
alt operator.  
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One entry and one exit exist at the start and at the end 
of the alt operator. Two or more exits may exist in a 
Branch and Merge Pattern as there can be at least two 
alternative paths. Thus when we label the branching 
structure with EE labels, we need to mark the labels 
outside the alt operator for one entry and one exit 
and multiple labels for each alternative path inside the 
alt operator. By Labeling Rule 4, we can explicitly 
represent which message events have occurred before 
and after the Branch and Merge Pattern (Figure 11). 

Labeling Rule 5 (The Loop Pattern). If a Loop Pattern 
occurs, mark one entry label at the start of the loop 
flow structure and one exit label at the end of the flow 
structure.  
The Loop Pattern has one entry and one exit per each 
object. Thus the loop operator is labeled with EE 
labels, at the start and at the end, per each object. With 
Labeling Rule 5, we can explicitly represent which 
message events have occurred before and after a Loop 
Pattern (Figure 12). 

 
(a) Diagram before applying Labeling Rule 5 

 
(b) Diagram after applying Labeling Rule 5 

Figure 12. Application of Labeling Rule 5 

Labeling Rule 6 (The Parallel Split and Join Pattern). 
If a Parallel Split and Join Pattern occurs, then mark 
one entry label at the start and one exit label at the end, 
respectively, of each control flow.  
Application of this rule is not shown here but the 
overall structure is as shown in the right hand side of 
Figure 6 where each reference is labeled as with 
Labeling Rule 1. 

III. SYNTHESIS PROCEDURE 

In our synthesis procedure, we start with layering the 
Sequence Diagrams that possibly contain references to 
other Sequence Diagrams. The synthesis procedure is 
shown in Figure 13. The procedure takes a set of 
scenarios in Sequence Diagrams as input. It consists of 
three kinds of steps: Step 0, Step i (for 1 ≤ i ≤ n) and 
Step n+1. Step 0 is the initial step and layering of the 
Sequence Diagrams is performed in this step. Steps 
1~n are represented by Step i, which should be 
repeated n times where n is the number of layers 
determined in Step 0. Step n+1 is the last step of the 
procedure.  

In the procedure, each step consists of a number of 
substeps and each substep is either performed 
mechanically without human intervention or performed 
manually by humans. The substeps involving human 
guide are lines 1 and 8. The rest of the substeps are 
performed mechanically. In line 1, the user determines 
the layering of the Sequence Diagrams. In line 8, the 
user decides how to partition them into fragments 
based on human intelligence.  

Step 0: 1.  Make layering of the Sequence Diagrams 
2.   n = number of layers  
3. Draw swim lanes  
4. i = 1 // i indicates the current layer 

Step i: 
(1 ≤ i ≤ n) 

5.   L = the set of MSCs in layer i 
6.   while L ≠ ∅ do 
7.       Select a Sequence Diagram M ∈ L 
8.     Determine applicable mapping patterns 

and partition M into fragments (The 
same pattern may apply multiple times) 

9.       Label fragments with EE labels using  
the labeling rules 

11.    Apply the mapping rules 
12.    Connect fragments with the same labels 
13.    Remove M from L 
14. endwhile 
15. if i < n then  
16.      i = i + 1 
17.      goto 5 
18. end if 

Step n+1: 19. Insert the initial node and the final node 
20. Remove the EE labels 
Figure 13. The Synthesis Procedure 
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In this procedure, partitioning of the Sequence 
Diagrams and the resulting labeling with the EE labels 
should be done based on insight on what locations in of 
scenarios are equivalent and what locations are not. 
After identifying the control flow patterns to be used, 
the labels are inserted at the positions as defined by 
labeling rules. Then mapping of the patterns to Activity 
Diagram and connecting the partitioned fragments 
based on the EE labels are carried out. 

Sequence Diagram references are expanded to basic 
Sequence Diagrams until there are no more Sequence 
Diagram references or the current layer is the lowest 
one. As we expand Sequence Diagram references, we 
apply labeling rules and mapping rules to each 
Sequence Diagram. Then they are transformed to the 
elements of an Activity Diagram and combined.  

We applied our synthesis procedure to the adapted 
version of the online bookstore example in Weiss et al. 
[17] to demonstrate that the transformation rules and 
the synthesis procedure correct and work well with a 
larger size of problem. The full details of the case study 
can be found in [8].  

IV. CONCLUSION 

In this paper, we presented the transformation rules for 
synthesis of Sequence Diagram specifications to UML 
Activity Diagrams. These rules consisted of mapping 
rules and labeling rules and were incorporated into our 
synthesis procedure for constructing a UML Activity 
Diagram from multiple scenarios.  

Through those transformation rules and the 
synthesis procedure, we showed the possibility of 
automating business process modeling from 
requirements through. An important application of our 
synthesis method would be development of the SOA 
style applications [4] where services are basic elements 
for constructing application and complex new services 
can be designed with the languages such as UML 
Activity Diagram or BPMN. In that approach, , our 
work can be used for automated conversion of 
Sequence Diagrams as a choreography description — 
which specifies dynamic interactions and message 
flows among existing applications — into UML 
Activity Diagram or BPMN. The newly defined or 
modified use cases can get into the business process 
model through our synthesis procedure. Ultimately, we 
expect that our approach will reduce time and cost for 
developing a system by bridging the gap between 
requirements and business process model, thus 
contributing to business process automation.   

For future work, we plan to improve our method by 
further automating the manual steps of the synthesis 
procedure and also to develop a tool that implements 
our transformation rules and synthesis procedure.  
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