

Transformation Rules for Synthesis of UML Activity Diagram from Scenario-based

Specification

Sungwon Kang, Hyunho Kim*, Jongmoon Baik, Hojin Choi, Changsup Keum
KAIST, Daejon, Korea

{sungwon.kang, jbaik, hjchoi, cskeum}@kaist.ac.kr
* Software Center, LG Electronics, Seoul, Korea

1h2kim@lge.com

Abstract—Although synthesis was considered an important
and challenging approach to construction of a program or a
program model in software development, most of research on
synthesis has been devoted to the construction of state
machine models or variations of them. Recently, as process
modeling through languages like UML Activity Diagram and
BPMN appears as a new paradigm of software development,
the ability to synthesize models in such languages from
requirements would tremendously increase the scope of
automatic software development. This paper presents
transformation rules for synthesis of UML Activity Diagrams
from scenario-based specifications modeled as UML Sequence
Diagrams. To that end, we first identify various control flow
patterns of Sequence Diagrams and define rules for mapping
them to corresponding parts of Activity Diagram. In order to
make precise such mapping labeling rules are introduced for
the patterns. Also we provide a synthesis algorithm for
construction of a UML Activity Diagram from scenarios.

 Keywords-component; Transformation, Synthesis, UML,
Activity Diagram, Scenario-based Specification, Sequence
Diagram, BPMN

I. INTRODUCTION

 The term “synthesis” has been traditionally used to
represent automatic construction of a program or a
behavioral model from formal requirements. This can be
seen in the remark by Manna et al. [12] that it “takes a
relational description and tries to produce a program that
is guaranteed to satisfy the relationship, and therefore does
not require debugging or verification” and the remark by
Harel et al. [5] that it is “the problem of automatically
constructing a behaviorally equivalent state-based
specification from the scenarios.”

 In the past, although synthesis was considered
important and challenging, research on synthesis was
carried out mostly to derive state-based models from
scenario-based specification [2,6,9,11,15,16,18]. Recently,
as the software systems and business processes of
enterprises become more and more complex, process
modeling through languages like UML Activity Diagram
and BPMN appears as a new paradigm of software
development. A notable example can be found in the
Service-Oriented Architecture approach to software

development [4], in which services are basic elements for
constructing new complex services and the complex
services are defined in terms of business process models
that are to be automatically executed by a process
execution engine. Therefore the ability to synthesize
models in such languages from requirements would
tremendously increase the scope of automatic software
development.

This paper presents a method for synthesizing process
models from scenario-based specifications [3,11], which
can be formally specified with the UML Sequence Diagram
[14] or the ITU-T Message Sequence Chart [1,7]. For
process models languages, most well known are UML
Activity Diagram [14] and BPMN [13]. Both of them are
graphical notations for specifying workflows and business
processes.

In contrast with synthesis of state machine models, the
synthesis of UML Activity Diagram has different
characteristics that pose unique challenges: First, UML
Activity Diagram is typically used for system-level design.
Therefore, the synthesis should not end with individually
synthesized state machines bust should end with a holistic
Activity Diagram that include all participants of the system.
Second, the synthesis of state machine models would
depend on state identification in Sequence Diagram. To
figure out common states throughout multiple scenarios,
previous researches either used explicit or implicit state
labeling. In contrast, for synthesis of UML Activity
Diagram, identify states would not work as Activity
Diagram does not show states.

This paper presents a synthesis method that overcomes
these challenges. To that end, first, we identify how control
structures in Sequence Diagrams can be transformed to
equivalent control structures in Activity Diagram and
present it as mapping rules. Then we introduce labeling
rules for adding new labels to Sequence Diagrams for
explicitly representing the ordering of events in each
process of Sequence Diagram, and, finally, provide a
synthesis procedure which constructs an Activity Diagram
from multiple scenarios.

The remainder of the paper is organized as follows: In
Section 2, mapping rules and labeling rules for synthesis of

2010 IEEE 34th Annual Computer Software and Applications Conference

0730-3157/10 $26.00 © 2010 IEEE

DOI 10.1109/COMPSAC.2010.51

431

2010 34th Annual IEEE Computer Software and Applications Conference

0730-3157/10 $26.00 © 2010 IEEE

DOI 10.1109/COMPSAC.2010.51

431

Sequence Diagrams to Activity Diagram are presented.
Section 3 presents our synthesis procedure. Finally, Section
4 is the conclusion and discusses the contributions of the
paper and the future research directions.

II. TRANSFORMATION RULES
There are seven basic control flow patterns that we
identified in Sequence Diagram. The most elementary rule
maps an action of an object in Sequence Diagram to an
action in Activity Diagram. For the rest of the six control
flow patterns, we associate two kinds of rules. The first is
mapping rules for transforming parts of a Sequence
Diagram into corresponding parts of an Activity Diagram.
The second is labeling rules that are necessary for tracking
while disassembling a Sequence Diagram into parts and
reassembling the transformation results for them.

A. Rules for Mapping Control Flow Patterns

Mapping Rule 0 (The Action Pattern). A self call action of
an object in a sequence diagram translates to an action of
the corresponding participant of an Activity Diagram.

Figure 1. Mapping of the Reference Pattern

Notice that in drawing a sequence diagram in Figure 1, we
used a few simplifications not to clutter diagrams. So an
object name is not boxed and activation is not explicitly
shown.

As more complicated aspect of transformation, the
control flow of the objects in Sequence Diagram can be
categorized into the six kinds to be called patterns: 1)
simple interaction, 2) reference, 3) sequence, 4) branch
and merge, 5) loop and 6) parallel split and join. They are
translated to Activity Diagram by applying the following
six mapping rules.

Mapping Rule 1 (The Simple Interaction Pattern). The left
hand side of Figure 2 shows a simple interaction which has
just one message passing between two objects. Message
passing description in Sequence Diagram can be translated
using the notations such as send signal, receive signal,
object nodes, and transition between the signal node and
the object node. To represent such parallel behavior that
represents message send event and message receive event
between two concurrent objects, join and fork nodes are
used.

Figure 2. Mapping of the Simple Interaction Pattern

Mapping Rule 2 (The Reference Pattern). This pattern is
used when a reference is used in a Sequence Diagram. The
left hand side of Figure 3 shows how reference to a
subdiagram ("K" in this example) is translated. Note that
when reference is used in Sequence Diagram, we omitted
explicit reference notation and simply used reference name.
Then it should be expanded later after the expansion of the
reference of Sequence Diagram is recursively translated
into the Activity Diagram and connected to the rest of the
Activity Diagram.

Figure 3. Mapping of the Reference Pattern

Mapping Rule 3 (The Sequence Pattern). This pattern
represents a simple sequence of message passing between
two objects. The order of message events is determined by
the vertical positions along the lifeline of each object. The
Sequence Pattern is illustrated in Figure 4. When references
are used, the reference type of Sequence Diagram
specification is translated into the interaction occurrence
type of Activity Diagram.

Figure 4. Mapping of the Sequence Pattern with a Simple Interaction and

an Sequence Diagram reference

Mapping Rule 4 (The Branch and Merge Pattern).
Application of the alt operator of Sequence Diagram can
be transformed to Activity Diagram using the
synchronization bars, decision nodes and the merge nodes.
The operands in the alt operator contain multiple paths

K

P1 P2

m2

Sequence

P1 P2
m1

K

P1 P2

sendreceive m1

K

Reference

P1 P2

K

P2

K

P1

Simple Interaction

P1 P2

m

P1 P2

send receive

Action
P

K

P

K

432432

with guard conditions and alternatives. All objects
participating in the alt operator select the same path. In
the corresponding Activity Diagram, all participants that
correspond to the objects that selects are synchronized and
forked before going into the alternative sections. Then the
participants that finish the alternative sections are merged
in the merge node as shown in Figure 4. This example and
the following examples show the case for two objects but it
can be generalized straightforwardly to the n objects case.
Mapping Rule 5 (The Loop Pattern). In order to transform a
loop operator of Sequence Diagram into an Activity
Diagram, setup, test, and body sections should be identified
first. After finishing the body section, each process that
participates in the body section goes back to the join node
to check the condition again.
Mapping Rule 6 (The Parallel Split and Join Pattern). The
par operator of Sequence Diagram represents parallel
composition of multiple scenarios. By using the fork and
join nodes of Activity Diagram, a participant can be split
into multiple threads and joined together as in Figure 7.

B. Labeling Rules for Sequence Diagram
When transforming a specification in Sequence Diagrams
to an Activity Diagram, fragments of Sequence Diagrams
are labeled with Entry and Exit (EE) labels. EE labels
provide information about relative positions of fragments
of Sequence Diagrams so that the transformed fragments
can be combined within an Activity Diagram [14] based on
them. There are six labeling rules as Mapping Rule 0 does
not have its corresponding labeling rule.

Labeling Rule 1 (The Simple Interaction Pattern). Insert
labels before and after each message event of each object.

In each object of a Sequence Diagram, an entry label is
inserted before and an exit label is inserted after a message
event (Figure 8). Each label must be unique.

Labeling Rule 2 (The Reference Pattern). Insert labels
before and after each reference in Sequence Diagram.

In each object of a Sequence Diagram, an entry label is
inserted before and the exit label is inserted after a
Sequence Diagram reference (Figure 8).

Figure 5. Mapping of the Branch and Merge Pattern

Figure 6. Mapping of the Loop Pattern

Figure 7. Mapping of the Parallel Split and Join Pattern

433433

Figure 8. Application of Labeling Rules 1 and 2

Labeling Rule 3 (The Sequence Pattern). Insert the
same entry label before a message event if a message
event is immediately followed by another message.

With this rule, the exit label of the current message
event and the entry label of the following message have
the same label. In this way, the order of message events
can be explicitly represented (Figure 9). This rule also
allows fragments of Sequence Diagram to be easily
connected to other transformed fragments in the
Activity Diagram (Figure 10).

(a) Diagram before applying Labeling Rule 3

(b) Diagram after applying Labeling Rule 3

Figure 9. Application of Labeling Rule 3

Figure 10. Connecting Sequence Diagram Fragments using Labels

(a) Diagram before applying Labeling Rule 4

(b) Diagram after applying Labeling Rule 4

Figure 11. Application of Labeling Rule 4

Labeling Rule 4 (The Branch and Merge Pattern). If a
Branch and Merge Pattern occurs, mark one entry label
at the start of the branching flow, exit labels at the end
of each alternative path per a participant and the end of
alt operator.

434434

One entry and one exit exist at the start and at the end
of the alt operator. Two or more exits may exist in a
Branch and Merge Pattern as there can be at least two
alternative paths. Thus when we label the branching
structure with EE labels, we need to mark the labels
outside the alt operator for one entry and one exit
and multiple labels for each alternative path inside the
alt operator. By Labeling Rule 4, we can explicitly
represent which message events have occurred before
and after the Branch and Merge Pattern (Figure 11).

Labeling Rule 5 (The Loop Pattern). If a Loop Pattern
occurs, mark one entry label at the start of the loop
flow structure and one exit label at the end of the flow
structure.
The Loop Pattern has one entry and one exit per each
object. Thus the loop operator is labeled with EE
labels, at the start and at the end, per each object. With
Labeling Rule 5, we can explicitly represent which
message events have occurred before and after a Loop
Pattern (Figure 12).

(a) Diagram before applying Labeling Rule 5

(b) Diagram after applying Labeling Rule 5

Figure 12. Application of Labeling Rule 5

Labeling Rule 6 (The Parallel Split and Join Pattern).
If a Parallel Split and Join Pattern occurs, then mark
one entry label at the start and one exit label at the end,
respectively, of each control flow.
Application of this rule is not shown here but the
overall structure is as shown in the right hand side of
Figure 6 where each reference is labeled as with
Labeling Rule 1.

III. SYNTHESIS PROCEDURE

In our synthesis procedure, we start with layering the
Sequence Diagrams that possibly contain references to
other Sequence Diagrams. The synthesis procedure is
shown in Figure 13. The procedure takes a set of
scenarios in Sequence Diagrams as input. It consists of
three kinds of steps: Step 0, Step i (for 1 ≤ i ≤ n) and
Step n+1. Step 0 is the initial step and layering of the
Sequence Diagrams is performed in this step. Steps
1~n are represented by Step i, which should be
repeated n times where n is the number of layers
determined in Step 0. Step n+1 is the last step of the
procedure.

In the procedure, each step consists of a number of
substeps and each substep is either performed
mechanically without human intervention or performed
manually by humans. The substeps involving human
guide are lines 1 and 8. The rest of the substeps are
performed mechanically. In line 1, the user determines
the layering of the Sequence Diagrams. In line 8, the
user decides how to partition them into fragments
based on human intelligence.

Step 0: 1. Make layering of the Sequence Diagrams
2. n = number of layers
3. Draw swim lanes
4. i = 1 // i indicates the current layer

Step i:
(1 ≤ i ≤ n)

5. L = the set of MSCs in layer i
6. while L ≠ ∅ do
7. Select a Sequence Diagram M ∈ L
8. Determine applicable mapping patterns

and partition M into fragments (The
same pattern may apply multiple times)

9. Label fragments with EE labels using
the labeling rules

11. Apply the mapping rules
12. Connect fragments with the same labels
13. Remove M from L
14. endwhile
15. if i < n then
16. i = i + 1
17. goto 5
18. end if

Step n+1: 19. Insert the initial node and the final node
20. Remove the EE labels
Figure 13. The Synthesis Procedure

435435

In this procedure, partitioning of the Sequence
Diagrams and the resulting labeling with the EE labels
should be done based on insight on what locations in of
scenarios are equivalent and what locations are not.
After identifying the control flow patterns to be used,
the labels are inserted at the positions as defined by
labeling rules. Then mapping of the patterns to Activity
Diagram and connecting the partitioned fragments
based on the EE labels are carried out.

Sequence Diagram references are expanded to basic
Sequence Diagrams until there are no more Sequence
Diagram references or the current layer is the lowest
one. As we expand Sequence Diagram references, we
apply labeling rules and mapping rules to each
Sequence Diagram. Then they are transformed to the
elements of an Activity Diagram and combined.

We applied our synthesis procedure to the adapted
version of the online bookstore example in Weiss et al.
[17] to demonstrate that the transformation rules and
the synthesis procedure correct and work well with a
larger size of problem. The full details of the case study
can be found in [8].

IV. CONCLUSION

In this paper, we presented the transformation rules for
synthesis of Sequence Diagram specifications to UML
Activity Diagrams. These rules consisted of mapping
rules and labeling rules and were incorporated into our
synthesis procedure for constructing a UML Activity
Diagram from multiple scenarios.

Through those transformation rules and the
synthesis procedure, we showed the possibility of
automating business process modeling from
requirements through. An important application of our
synthesis method would be development of the SOA
style applications [4] where services are basic elements
for constructing application and complex new services
can be designed with the languages such as UML
Activity Diagram or BPMN. In that approach, , our
work can be used for automated conversion of
Sequence Diagrams as a choreography description —
which specifies dynamic interactions and message
flows among existing applications — into UML
Activity Diagram or BPMN. The newly defined or
modified use cases can get into the business process
model through our synthesis procedure. Ultimately, we
expect that our approach will reduce time and cost for
developing a system by bridging the gap between
requirements and business process model, thus
contributing to business process automation.

For future work, we plan to improve our method by
further automating the manual steps of the synthesis
procedure and also to develop a tool that implements
our transformation rules and synthesis procedure.

REFERENCES

[1] R. Alur, K. Etessami, M. Yannakakis, “Inference of
Message Sequence Charts,” IEEE Transactions on Software
Engineering, v.29 n.7, p.623-633, July 2003.
[2] F. Bordeleau, J.-P. Corriveau, and B. Selic, “A scenario-
based approach to hierarchical state machine design,” The
3rd IEEE Int’l Symposium on Object-Oriented Real-time
Distributed Computing (ISORC '00), March 2000.
[3] A. Cockburn, “Structuring Use Cases with Goals,”
Journal of Object-Oriented Programming, Sep-Oct and Nov-
Dec, 1997.
[4] T. Erl, Service-Oriented Architecture: Concepts,
Technology, and Design, Pearson Education, Inc., 2005.
[5] D. Harel, H. Kugler, “Synthesizing state-based object
systems from LSC specifications,” Int’l Journal of
Foundations of Computer Science, 13(1):5–51, Febuary 2002.
[6] D. Harel, H. Kugler, and A. Pnueli, “Synthesis revisited:
Generating statechart models from scenario-based
requirements,” Formal Methods in Software and System
Modeling, LNCS 3393, pp. 309-324, 2005.
[7] ITU-T, Message Sequence Charts, ITU-T Rec. Z.120,
April 2004.
[8] H. H. Kim, Synthesis of UML Activity Diagram from
Scenario-based Specification, Master of Science Thesis,
KAIST, Korea, 2009.
[9] I. Krűger, R. Grosu, P. Scholz, and M. Broy, “From
MSCs to statecharts,” Int’l Workshop on Distributed and
Parallel Embedded Systems (DIPES '98), 1999.
[10] H. Liang, J. Dingel, Z. Diskin, “A comparative survey of
scenario-based to state-based model synthesis approaches,”
2006 Int’l Workshop on Scenarios and State Machines:
Models, Algorithms and Tools, pp. 5-12, 2006.
[11] S. Leue, L. Mehrmann, M. Rezai, “Synthesizing ROOM
models from Message Sequence Chart specifications,”
Technical Report, Dept. of Electrical and Computer
Engineering, Univ. of Waterloo, 1998.
[12] Z. Manna, R. J. Waldinger, “Toward automatic program
synthesis,” CACM, Vol.14, Issue 3, pp. 151-165, 1971.
[13] Object Management Group (OMG), Business Process
Modeling Notation (BPMN) Version 1.1, January 2008.
[14] Object Management Group (OMG), UML 2.1.2:
Superstructure Specification, OMG document ptc/2007-11-
01 November, 2007.
[15] M. Sgroi, A. Kondratyev, Y. Watanabe, L. Lavagno, and
A. Sangiovanni-Vincentelli, “Synthesis of Petri Nets from
Message Sequence Charts Specifications for Protocol Design,”
The Design, Analysis and Simulation of Distributed Systems
Symposium (DASD '04), April 2004.
[16] S. Uchitel and J. Kramer, “A workbench for
synthesizing behaviour models from scenarios,” The 23rd
IEEE International Conference on Software Engineering
(ICSE '01), May 2001.
[17] M. Weiss and D. Amyot, “Business Process Modeling
with URN,” Int’l Journal of E-Business Research, 1(3) 63-
90, July-September 2005.
[18] J. Whittle and J. Schumann, “Generating statechart
designs from scenarios,” The 22nd International Conference
on Software Engineering (ICSE‘00), pp. 314–323, 2000.

436436

